• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Statistical Foundations of Actuarial Learning and its Applications

    Statistical Foundations of Actuarial Learning and its Applications by Wüthrich, Mario V.; Merz, Michael;

    Sorozatcím: Springer Actuarial;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 42.79
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        18 151 Ft (17 287 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 1 452 Ft off)
      • Discounted price 16 699 Ft (15 904 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2023
    • Kiadó Springer
    • Megjelenés dátuma 2022. november 23.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783031124112
    • Kötéstípus Puhakötés
    • Terjedelem605 oldal
    • Méret 235x155 mm
    • Súly 937 g
    • Nyelv angol
    • Illusztrációk 1 Illustrations, black & white
    • 473

    Kategóriák

    Rövid leírás:

    This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.


    Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  

    Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how tointerpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.

    Több

    Hosszú leírás:

    This open access book discusses the statistical modeling of insurance problems, a process which comprises data collection, data analysis and statistical model building to forecast insured events that may happen in the future. It presents the mathematical foundations behind these fundamental statistical concepts and how they can be applied in daily actuarial practice.

    Statistical modeling has a wide range of applications, and, depending on the application, the theoretical aspects may be weighted differently: here the main focus is on prediction rather than explanation. Starting with a presentation of state-of-the-art actuarial models, such as generalized linear models, the book then dives into modern machine learning tools such as neural networks and text recognition to improve predictive modeling with complex features.  



    Providing practitioners with detailed guidance on how to apply machine learning methods to real-world data sets, and how to interpret the results without losing sight of the mathematical assumptions on which these methods are based, the book can serve as a modern basis for an actuarial education syllabus.



    Több

    Tartalomjegyzék:

    - 1. Introduction. - 2. Exponential Dispersion Family. - 3. Estimation Theory. - 4. Predictive Modeling and Forecast Evaluation. - 5. Generalized Linear Models. - 6. Bayesian Methods, Regularization and Expectation-Maximization. - 7. Deep Learning. - 8. Recurrent Neural Networks. - 9. Convolutional Neural Networks. - 10. Natural Language Processing. - 11. Selected Topics in Deep Learning. - 12. Appendix A: Technical Results on Networks. - 13. Appendix B: Data and Examples.

    Több
    Mostanában megtekintett
    previous
    Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives

    Multiplicative Ideal Theory and Factorization Theory: Commutative and Non-commutative Perspectives

    Chapman, Scott; Fontana, Marco; Geroldinger, Alfred;(ed.)

    77 157 Ft

    Statistical Foundations of Actuarial Learning and its Applications

    Statistical Foundations of Actuarial Learning and its Applications

    Wüthrich, Mario V.; Merz, Michael;

    18 151 Ft

    Computer Vision Beyond the Visible Spectrum

    Computer Vision Beyond the Visible Spectrum

    Bhanu, Bir; Pavlidis, Ioannis; (ed.)

    68 079 Ft

    Evolutionary Synthesis of Pattern Recognition Systems

    Evolutionary Synthesis of Pattern Recognition Systems

    Bhanu, Bir; Lin, Yingqiang; Krawiec, Krzysztof;

    68 079 Ft

    Topics And Methods In Q-series

    Topics And Methods In Q-series

    Laughlin, James Mc;

    38 969 Ft

    Computer Vision Beyond the Visible Spectrum

    Computer Vision Beyond the Visible Spectrum

    Bhanu, Bir; Pavlidis, Ioannis; (ed.)

    68 079 Ft

    Effective Statistical Learning Methods for Actuaries II: Tree-Based Methods and Extensions

    Effective Statistical Learning Methods for Actuaries II: Tree-Based Methods and Extensions

    Denuit, Michel; Hainaut, Donatien; Trufin, Julien;

    22 690 Ft

    Statistical Foundations of Actuarial Learning and its Applications

    Statistical Foundations of Actuarial Learning and its Applications

    Wüthrich, Mario V.; Merz, Michael;

    22 690 Ft

    Ideal Theory of Commutative Rings and Monoids

    Ideal Theory of Commutative Rings and Monoids

    Halter-Koch, Franz; , Geroldinger, Alfred; Reinhart, Andreas; (ed.)

    34 037 Ft

    next