Subspace Learning of Neural Networks - Cheng Lv, Jian; Yi, Zhang; Zhou, Jiliu; - Prospero Internetes Könyváruház

Subspace Learning of Neural Networks
 
A termék adatai:

ISBN13:9781439815359
ISBN10:1439815356
Kötéstípus:Keménykötés
Terjedelem:256 oldal
Méret:234x156 mm
Súly:500 g
Nyelv:angol
Illusztrációk: 84 Illustrations, black & white; 5 Tables, black & white
0
Témakör:

Subspace Learning of Neural Networks

 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 130.00
Becsült forint ár:
68 250 Ft (65 000 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

61 425 (58 500 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 6 825 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.

Hosszú leírás:

Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors.

Tartalomjegyzék:

Introduction. PCA Learning Algorithms with Constants Learning Rates. PCA Learning Algorithms with Adaptive Learning Rates. GHA PCA Learning Algorithms. MCA Learning Algorithms. ICA Learning Algorithms. Chaotic Behaviors Arising from Learning Algorithms. Multi-Block-Based MCA for Nonlinear Surface Fitting. A ICA Algorithm for Extracting Fetal Electrocardiogram. Some Applications of PCA Neural Networks. Conclusion.