
Survey of Text Mining
Clustering, Classification, and Retrieval
-
8% KEDVEZMÉNY?
- A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
- Kiadói listaár EUR 106.99
-
Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.
- Kedvezmény(ek) 8% (cc. 3 631 Ft off)
- Discounted price 41 753 Ft (39 765 Ft + 5% áfa)
45 385 Ft
Beszerezhetőség
Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Why don't you give exact delivery time?
A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.
A termék adatai:
- Kiadás sorszáma 2004
- Kiadó Springer
- Megjelenés dátuma 2003. szeptember 9.
- Kötetek száma 1 pieces, Book
- ISBN 9780387955636
- Kötéstípus Keménykötés
- Terjedelem244 oldal
- Méret 235x155 mm
- Súly 576 g
- Nyelv angol
- Illusztrációk 46 Illustrations, black & white 0
Kategóriák
Rövid leírás:
As the volume of digitized textual information continues to grow, so does the critical need for designing robust and scalable indexing and search strategies/software to meet a variety of user needs. Knowledge extraction or creation from text requires systematic, yet reliable processing that can be codified and adapted for changing needs and environments.
Survey of Text Mining is a comprehensive edited survey organized into three parts: Clustering and Classification; Information Extraction and Retrieval; and Trend Detection. Many of the chapters stress the practical application of software and algorithms for current and future needs in text mining. Authors from industry provide their perspectives on current approaches for large-scale text mining and obstacles that will guide R&D activity in this area for the next decade.
Topics and features:
* Highlights issues such as scalability, robustness, and software tools
* Brings together recent research and techniques from academia and industry
* Examines algorithmic advances in discriminant analysis, spectral clustering, trend detection, and synonym extraction
* Includes case studies in mining Web and customer-support logs for hot- topic extraction and query characterizations
* Extensive bibliography of all references, including websites
This useful survey volume taps the expertise of academicians and industry professionals to recommend practical approaches to purifying, indexing, and mining textual information. Researchers, practitioners, and professionals involved in information retrieval, computational statistics, and data mining, who need the latest text-mining methods and algorithms, will find the book an indispensable resource.
TöbbHosszú leírás:
Extracting content from text continues to be an important research problem for information processing and management. Approaches to capture the semantics of text-based document collections may be based on Bayesian models, probability theory, vector space models, statistical models, or even graph theory.
As the volume of digitized textual media continues to grow, so does the need for designing robust, scalable indexing and search strategies (software) to meet a variety of user needs. Knowledge extraction or creation from text requires systematic yet reliable processing that can be codified and adapted for changing needs and environments.
This book will draw upon experts in both academia and industry to recommend practical approaches to the purification, indexing, and mining of textual information. It will address document identification, clustering and categorizing documents, cleaning text, and visualizing semantic models of text.
TöbbTartalomjegyzék:
I Clustering and Classification.- 1 Cluster-Preserving Dimension Reduction Methods for Efficient Classification of Text Data.- 2 Automatic Discovery of Similar Words.- 3 Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents.- 4 Feature Selection and Document Clustering.- II Information Extraction and Retrieval.- 5 Vector Space Models for Search and Cluster Mining.- 6 HotMiner: Discovering Hot Topics from Dirty Text.- 7 Combining Families of Information Retrieval Algorithms Using Metalearning.- III Trend Detection.- 8 Trend and Behavior Detection from Web Queries.- 9 A Survey of Emerging Trend Detection in Textual Data Mining.
Több