Systems Biology and Machine Learning Methods in Reproductive Health - Sengupta, Abhishek; Narad, Priyanka; Gupta, Dinesh;(szerk.) - Prospero Internetes Könyváruház

Systems Biology and Machine Learning Methods in Reproductive Health

 
Kiadás sorszáma: 1
Kiadó: Chapman and Hall
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 74.99
Becsült forint ár:
38 346 Ft (36 520 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

30 677 (29 216 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 7 669 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

Bringing science and data science together, this ground-breaking book provides scientists, clinicians, and students with a step-by-step guide to uncovering the complexities of reproductive health through cutting-edge computational tools.


 

Hosszú leírás:
Systems Biology and Machine Learning Methods in Reproductive Health is an innovative and wide-ranging book that discovers the synergetic combination of disciplines: systems biology and machine learning, with an application in the field of reproductive health. This book assembles the expertise of leading scientists and clinicians to present a compilation of cutting-edge techniques and case studies utilizing computational methods to elucidate intricate biological systems, elucidate reproductive pathways, and address critical issues in the fields of fertility, pregnancy, and reproductive disorders. Bringing science and data science together, this groundbreaking book provides scientists, clinicians, and students with a step-by-step guide to uncovering the complexities of reproductive health through cutting-edge computational tools.
Tartalomjegyzék:

1.     Introduction to Systems Biology and Machine Learning                                         



2.     Data Sources and Data Integration in Reproductive Health                                  


3.     Genomics and Transcriptomics in Reproductive Health                                         


4.     Proteomics and Metabolomics in Reproductive Health                                    


5.     Systems Biology Approaches in Reproductive Health                                             



6.     Machine Learning Algorithms in Reproductive Health                                          



7.     Personalized Medicine in Reproductive Health                                                       



8.     Ethical and Privacy Considerations                                                                          



9.     Challenges and Future Directions