Theory and Applications of the Poincaré Group - Başkal, Sibel; Kim, Young Suh; Noz, Marilyn E.; - Prospero Internetes Könyváruház

Theory and Applications of the Poincaré Group
 
A termék adatai:

ISBN13:9783031634888
ISBN10:3031634888
Kötéstípus:Keménykötés
Terjedelem:486 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 12 Illustrations, black & white; 40 Illustrations, color
700
Témakör:

Theory and Applications of the Poincaré Group

 
Kiadás sorszáma: Second Edition 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 90.94
Becsült forint ár:
38 767 Ft (36 921 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

31 014 (29 537 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 7 753 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book is intended mainly as a teaching tool directed toward those who desire a deeper understanding of group theory in terms of examples applicable to the physical world and/or of the physical world in terms of the symmetry properties which can best be formulated in terms of group theory. Both advanced students and scholars interested in the relationship between group theory and physics will find it instructive. In particular, those engaged in high-energy physics and foundations of quantum mechanics will find this book rich in illustrative examples of relativistic quantum mechanics.



 



This new edition contains four new chapters, two of which are consistent with Dirac's aim to combine the important developments in physics in the twentieth century, namely quantum mechanics and special relativity.  Moreover, these new chapters also discuss various aspects of classical and quantum optics that are now understood to be interrelated.  Most of the original chapters have been updated, either with new material added or in some instances reinterpretation of the original.  The order of the chapters has been rearranged to create a more cohesive presentation. The original purpose of the first edition, namely to present examples to which physics students and researchers can relate, has not been altered.

Hosszú leírás:

This book is intended mainly as a teaching tool directed toward those who desire a deeper understanding of group theory in terms of examples applicable to the physical world and/or of the physical world in terms of the symmetry properties which can best be formulated in terms of group theory. Both advanced students and scholars interested in the relationship between group theory and physics will find it instructive. In particular, those engaged in high-energy physics and foundations of quantum mechanics will find this book rich in illustrative examples of relativistic quantum mechanics.



 



This new edition contains four new chapters, two of which are consistent with Dirac's aim to combine the important developments in physics in the twentieth century, namely quantum mechanics and special relativity.  Moreover, these new chapters also discuss various aspects of classical and quantum optics that are now understood to be interrelated.  Most of the original chapters have been updated, either with new material added or in some instances reinterpretation of the original.  The order of the chapters has been rearranged to create a more cohesive presentation. The original purpose of the first edition, namely to present examples to which physics students and researchers can relate, has not been altered.



 

Tartalomjegyzék:

Overview.- Theory of the Poincaré Group.- Theory of Spinors.- Group Contractions.- Covariant Harmonic Oscillator Formalism.- Dirac?s Form of Relativistic Quantum Mechanics.- Symmetries of Dirac?s Coupled Oscillators and Dirac?s Matrices.- The Lorentz Group.- Lorentz-Dirac Deformation in High-Energy Physics.- Decoherence and the Poincaré Sphere.-Lorentz Group in Classical Optics.