Theory of Electrostatic Waves in Hyperbolic Metamaterials - Moradi, Afshin; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9783031485985
ISBN10:303148598X
Kötéstípus:Puhakötés
Terjedelem:229 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 4 Illustrations, black & white; 88 Illustrations, color
700
Témakör:

Theory of Electrostatic Waves in Hyperbolic Metamaterials

 
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 128.39
Becsült forint ár:
55 811 Ft (53 153 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

44 649 (42 522 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 11 162 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book covers electrostatic properties of hyperbolic metamaterials (HMMs), a fascinating class of metamaterials which combine dielectric and metal components. Due to the hyperbolic topology of the isofrequency surface in HMMs, the so-called resonance cone direction exists, and as a result, propagation of quasi-electrostatic waves, or more commonly, electrostatic waves close to the resonance cone with large wave vectors, is possible. However, the investigation of electrostatic wave properties in HMMs is largely overlooked in most works on the subject, and the purpose of this monograph is to fill this gap. This book gives a thorough theoretical treatment of propagation, reflection, and refraction of electrostatic waves in HMMs of various dimensions and geometries. It will be of interest to students and researchers who work on electrical and optical properties of metamaterials.

Hosszú leírás:

This book covers electrostatic properties of hyperbolic metamaterials (HMMs), a fascinating class of metamaterials which combine dielectric and metal components. Due to the hyperbolic topology of the isofrequency surface in HMMs, the so-called resonance cone direction exists, and as a result, propagation of quasi-electrostatic waves, or more commonly, electrostatic waves close to the resonance cone with large wave vectors, is possible. However, the investigation of electrostatic wave properties in HMMs is largely overlooked in most works on the subject, and the purpose of this monograph is to fill this gap. This book gives a thorough theoretical treatment of propagation, reflection, and refraction of electrostatic waves in HMMs of various dimensions and geometries. It will be of interest to students and researchers who work on electrical and optical properties of metamaterials.



?This reference provides a detailed theoretical framework for the modified system of Maxwell?s equations in anisotropic media, which is well-suited for advanced undergraduate or graduate students as well as scientists interested in the combined effects of dielectric and metal components for the resulting field. Readers with an interest in photonic crystals or surface waves will find a detailed analytical treatment on dispersion relationships, phase, and group velocities with possible group delays for hyperbolic metamaterials.? (Axel Mainzer Koenig, optica-opn.org, March 7, 2024)

Tartalomjegyzék:

Chapter 1. Hyperbolic Metamaterials.- Chapter 2. ElectrostaticWave Propagation in Unbounded Hyperbolic Metamaterials.- Chapter 3. Reflection and Refraction of ElectrostaticWaves at Hyperbolic Surfaces.- Chapter 4. Transmission and Reflection of Electrostatic Waves in Hyperbolic Slabs.- Chapter 5. Electrostatic Waves in Photonic Hypercrystals.- Chapter 6. Electrostatic Waves in Rectangular Waveguides Filled with Hyperbolic Metamaterials.- Chapter 7. Electrostatic Waves in a Planar Slab of Hyperbolic Metamaterials.- Chapter 8. Electrostatic Problems Involving Hyperbolic Metamaterials in Cylindrical and Spherical Geometries.- Chapter 9. ElectrostaticWaves on the Surface of Hyperbolic Metamaterials.- Chapter 10. Electrostatic Waves in Hyperbolic Metasurfaces.