• Kapcsolat

  • Hírlevél

  • Rólunk

  • Szállítási lehetőségek

  • Hírek

  • 0
    Tilings of the Plane: From Escher via Möbius to Penrose

    Tilings of the Plane by Behrends, Ehrhard;

    From Escher via Möbius to Penrose

    Sorozatcím: Mathematics Study Resources; 2;

      • 8% KEDVEZMÉNY?

      • A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
      • Kiadói listaár EUR 64.19
      • Az ár azért becsült, mert a rendelés pillanatában nem lehet pontosan tudni, hogy a beérkezéskor milyen lesz a forint árfolyama az adott termék eredeti devizájához képest. Ha a forint romlana, kissé többet, ha javulna, kissé kevesebbet kell majd fizetnie.

        27 229 Ft (25 932 Ft + 5% áfa)
      • Kedvezmény(ek) 8% (cc. 2 178 Ft off)
      • Discounted price 25 050 Ft (23 857 Ft + 5% áfa)

    Beszerezhetőség

    Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
    A Prosperónál jelenleg nincsen raktáron.

    Why don't you give exact delivery time?

    A beszerzés időigényét az eddigi tapasztalatokra alapozva adjuk meg. Azért becsült, mert a terméket külföldről hozzuk be, így a kiadó kiszolgálásának pillanatnyi gyorsaságától is függ. A megadottnál gyorsabb és lassabb szállítás is elképzelhető, de mindent megteszünk, hogy Ön a lehető leghamarabb jusson hozzá a termékhez.

    A termék adatai:

    • Kiadás sorszáma 1st ed. 2022
    • Kiadó Springer
    • Megjelenés dátuma 2022. november 13.
    • Kötetek száma 1 pieces, Book

    • ISBN 9783658388096
    • Kötéstípus Puhakötés
    • Terjedelem283 oldal
    • Méret 235x155 mm
    • Súly 456 g
    • Nyelv angol
    • Illusztrációk 10 Illustrations, black & white; 303 Illustrations, color
    • 862

    Kategóriák

    Rövid leírás:

    The aim of the book is to study symmetries and tesselation, which have long interested artists and mathematicians. Famous examples are the works created by the Arabs in the Alhambra and the paintings of the Dutch painter Maurits Escher. Mathematicians did not take up the subject intensively until the 19th century. In the process, the visualisation of mathematical relationships leads to very appealing images. Three approaches are described in this book.

    In Part I, it is shown that there are 17 principally different possibilities of tesselation of the plane, the so-called "plane crystal groups". Complementary to this, ideas of Harald Heesch are described, who showed how these theoretical results can be put into practice: He gave a catalogue of 28 procedures that one can use creatively oneself - following in the footsteps of Escher, so to speak - to create artistically sophisticated tesselation.

    In the corresponding investigations for the complex plane in Part II, movements are replaced by bijective holomorphic mappings. This leads into the theory of groups of Möbius transformations: Kleinian groups, Schottky groups, etc. There are also interesting connections to hyperbolic geometry.

    Finally, in Part III, a third aspect of the subject is treated, the Penrose tesselation. This concerns results from the seventies, when easily describable and provably non-periodic parquetisations of the plane were given for the first time.


    The Contents
    Part I: Escher seen over the shoulders- Part II: Möbius transformations - Part III: Penrose tesselation


    The Author
    Prof. Dr. Ehrhard Behrends, Free University of Berlin, Department of Mathematics and Computer Science, is the author of numerous mathematical textbooks and popular science books. 

    Több

    Hosszú leírás:

    The aim of the book is to study symmetries and tesselation, which have long interested artists and mathematicians. Famous examples are the works created by the Arabs in the Alhambra and the paintings of the Dutch painter Maurits Escher. Mathematicians did not take up the subject intensively until the 19th century. In the process, the visualisation of mathematical relationships leads to very appealing images. Three approaches are described in this book.

    In Part I, it is shown that there are 17 principally different possibilities of tesselation of the plane, the so-called 'plane crystal groups'. Complementary to this, ideas of Harald Heesch are described, who showed how these theoretical results can be put into practice: He gave a catalogue of 28 procedures that one can use creatively oneself ? following in the footsteps of Escher, so to speak ? to create artistically sophisticated tesselation.

    In the corresponding investigations forthe complex plane in Part II, movements are replaced by bijective holomorphic mappings. This leads into the theory of groups of Möbius transformations: Kleinian groups, Schottky groups, etc. There are also interesting connections to hyperbolic geometry.

    Finally, in Part III, a third aspect of the subject is treated, the Penrose tesselation. This concerns results from the seventies, when easily describable and provably non-periodic parquetisations of the plane were given for the first time. 






    ?Tilings is a fascinating and actively developing topic of modern mathematics. On the one hand, it is full of deep results with important physicalapplications. On the other hand, many results of tilings theory can be understood by non-professionals. ... I highly recommend to read this book to any who are interested in tilings.? (Anton Shutov, zbMATH 1511.52001, 2023)

    Több

    Tartalomjegyzék:

    Part I: Escher seen over his shoulders.- Part II: Furniture transformations.- Part III: Penrose tesselation.

    Több