Time-Varying Systems and Computations - DeWilde, Patrick; Veen, Alle-Jan van der; - Prospero Internetes Könyváruház

Time-Varying Systems and Computations
 
A termék adatai:

ISBN13:9780792381891
ISBN10:07923818911
Kötéstípus:Keménykötés
Terjedelem:460 oldal
Méret:235x155 mm
Súly:1880 g
Nyelv:angol
Illusztrációk: XIV, 460 p. Illustrations, black & white
0
Témakör:

Time-Varying Systems and Computations

 
Kiadás sorszáma: 1998
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 160.49
Becsült forint ár:
68 079 Ft (64 837 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

62 633 (59 650 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 5 446 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Hosszú leírás:
Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari­ able s or z and it is analytic in a large part of the complex plane. Many important prop­ erties of the system for which it is a transfer function are related to its analytic prop­ erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi­ e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi­ mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.
Tartalomjegyzék:
1. Introduction.- I Realization.- 2. Notation and Properties of Non-Uniform Spaces.- 3. Time-Varying State Space Realizations.- 4. Diagonal Algebra.- 5. Operator Realization Theory.- 6. Isometric and Inner Operators.- 7. Inner-Outer Factorization and Operator Inversion.- II Interpolation and Approximation.- 8. J-Unitary Operators.- 9. Algebraic Interpolation.- 10. Hankel-Norm Model Reduction.- 11. Low-Rank Matrix Approximation and Subspace Tracking.- III Factorization.- 12. Orthogonal Embedding.- 13. Spectral Factorization.- 14. Lossless Cascade Factorizations.- 15. Conclusion.- Appendices.- A?Hilbert space definitions and properties.- References.- Glossary of notation.