Toward Trustworthy Adaptive Learning - Jiang, Bo; - Prospero Internetes Könyváruház

Toward Trustworthy Adaptive Learning: Explainable Learner Models
 
A termék adatai:

ISBN13:9781032954950
ISBN10:1032954957
Kötéstípus:Keménykötés
Terjedelem:234 oldal
Méret:234x156 mm
Nyelv:angol
Illusztrációk: 60 Illustrations, black & white; 60 Halftones, black & white; 27 Tables, black & white
700
Témakör:

Toward Trustworthy Adaptive Learning

Explainable Learner Models
 
Kiadás sorszáma: 1
Kiadó: Routledge
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 145.00
Becsült forint ár:
76 125 Ft (72 500 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

68 513 (65 250 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 7 613 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book offers an in-depth exploration of explainable learner models, presenting theoretical foundations and practical applications in the context of educational AI. A valuable resource for researchers and educators, as well as for policymakers focused on promoting equitable and transparent learning environments.

Hosszú leírás:

This book offers an in-depth exploration of explainable learner models, presenting theoretical foundations and practical applications in the context of educational AI. It aims to provide readers with a comprehensive understanding of how these models can enhance adaptive learning systems.


Chapters cover a wide range of topics, including the development and optimization of explainable learner models, the integration of these models into adaptive learning systems, and their implications for educational equity. It also discusses the latest advancements in AI explainability techniques, such as pre-hoc and post-hoc explainability, and their application in intelligent tutoring systems. Lastly, the book provides practical examples and case studies to illustrate how explainable learner models can be implemented in real-world educational settings.


This book is an essential resource for researchers, educators, and practitioners interested in the intersection of AI and education. It offers valuable insights for those looking to integrate explainable AI into their educational practices, as well as for policymakers focused on promoting equitable and transparent learning environments.

Tartalomjegyzék:

Table of Contents


Preface 


Authors


Contributors


Section I. Explainable Learner Models: An Overview


1.     Trustworthy AI for Adaptive Learning


2.     Explainable Learner Models: Concepts, Classifications, and Datasets


3.     Construction and Interpretation of Explainable Models: A Case Study on BKT


Section II. Research on Ante-hoc Explainability Learner Models


4.     Interpretable Cognitive State Prediction via Temporal Fuzzy Cognitive Map


5.     Improving the performance and explainability of knowledge tracing via Markov blanket


6.     Knowledge Tracing within Single Programming Practice Using Problem-Solving Process Data


Section III. Research on Post-hoc Explainability Learner Models


7.     Understanding the relationship between computational thinking and computational participation


8.     Understanding students? backtracking behaviour in digital textbooks: a data-driven perspective


Section IV. Toward Trustworthy Adaptive Learning


9.     Frameworks for Explainable Learner Models


10.  Frameworks for Trustworthy AI for Adaptive Learning


Index