
A termék adatai:
ISBN13: | 9780443402944 |
ISBN10: | 0443402949 |
Kötéstípus: | Keménykötés |
Terjedelem: | 700 oldal |
Méret: | 276x215 mm |
Nyelv: | angol |
700 |
Témakör:
Treatise on Process Metallurgy, Volume 2B
Unit Processes
Kiadó: Elsevier
Megjelenés dátuma: 2025. május 1.
Normál ár:
Kiadói listaár:
EUR 323.99
EUR 323.99
Az Ön ára:
126 754 (120 718 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 14 084 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
Kattintson ide a feliratkozáshoz
Beszerezhetőség:
Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
Hosszú leírás:
Treatise on Process Metallurgy, Volume 2B: Unit Processes, presents various unit processes with an emphasis on mineral processing, hydrometallurgy, and electrochemical materials and energy processes. The book highlights the roles of these processes in beneficiation, rare-earth extraction, utilization of lean resources, coal extraction, and biofuels, reflecting the shift toward green and electrochemical processes. Basic knowledge of thermodynamics and kinetics is provided for better understanding of metallurgical processes. The first section of the book covers mineral processing, providing insight on comminution, separation processes, dewatering, and tailings disposal. The second section focuses on hydrometallurgy, discussing leaching, separation-purification, metal recovery, and battery materials, and the book concludes with a section studying electrochemical material and energy, featuring coverage of molten oxide electrolysis, molten carbonate fuel cells, various sensors, and ionic liquids. Each section also includes various case studies, demonstrating the use of the concepts in real-world settings.
Tartalomjegyzék:
Section 1
1.1 Mineral Processing, Importance, Introduction
1. 2 Ore Body Knowledge
1.3 Beneficiation, Physical separation processes
1.4.1 Comminution
1.4.2 Separation Processes
1.4.2.1 Classification
1.4.2.2 Gravity (Density)
1.4.2.3 Dense Media Separation
1.4.2.4 Floatation
1.4.2.5 Magnetic Separation
1.4.2.6 Electrostatic Separation
1.4.2.7 Ore sorting
1.5. Emerging Trends in Mining and Mineral Processing
1.6. Dewatering
1.7. Tailings Disposal
1.8. Case studies
1.8.1 Iron ore
1.8.2 Non-ferrous
1.8.3 Metallurgical Coal
1.8.4 Mineral Sands
1.8.5 Industrial Minerals-Graphite
1.8.6 Diamond
Section 2
2. 1 Importance of Hydrometallurgy, Introduction
2.2 Extraction
2.2.1 Introduction
2.2.2. Leaching Chemistries: Sulfate, Chloride, etc, thermo, complexation, etc., unconventional lixiviants and catalysts:
2.2.3. Leaching Kinetics and mechanisms.
2.2.4. Heap Leaching
2.2.5. Tank Leaching
2.2.6 Bio leaching
2.2.7. Autoclave Leaching
2.3. Separation-Purification
2.3.1. Introduction
2.3.2. SX
2.3.3. IX
2.3.4. Precipitation
2. 4. Metal Recovery
2.4.1. Introduction
2.4.2. Electrowinning and Electrorefining
2.4.2. Chemical Reduction
2.5. Case studies
2.5.1. Gold
2.5.2. Copper
2.5.3. Nickel and Cobalt
2.6 Frontiers
2.6.1. Battery materials
2.6.2. Rare earths
2.6.3. Environmental issues
Section 3: Electrochemical material and energy
3. 1. Introduction
3.2. Molten Oxide Electrolysis
3.3. OS Process
3.4. FFC-Cambridge Process
3.5. Solid Oxide Membrane Process
3.6. Refining of Nuclear Materials in Salt Melts
3.7. Preparation of Nanocarbons in Molten Salts
3.8. Thermal Batteries
3.9. Sodium Nickel Chloride (ZEBRA) Battery
3.10. Molten Metal Batteries
3.11. Molten Carbonate Fuel Cells
3.12. AMTEC
3.13. Nuclear Molten Salt Reactor
3.14. Oxygen Sensors for Iron and Copper Melts
3.15. Hydrogen Sensors for Molten Aluminum and its Alloys
3.16. Oxygen, Hydrogen and Carbon Sensors for Molten Sodium
3.17. Ionic Liquids in Process Metallurgy
1.1 Mineral Processing, Importance, Introduction
1. 2 Ore Body Knowledge
1.3 Beneficiation, Physical separation processes
1.4.1 Comminution
1.4.2 Separation Processes
1.4.2.1 Classification
1.4.2.2 Gravity (Density)
1.4.2.3 Dense Media Separation
1.4.2.4 Floatation
1.4.2.5 Magnetic Separation
1.4.2.6 Electrostatic Separation
1.4.2.7 Ore sorting
1.5. Emerging Trends in Mining and Mineral Processing
1.6. Dewatering
1.7. Tailings Disposal
1.8. Case studies
1.8.1 Iron ore
1.8.2 Non-ferrous
1.8.3 Metallurgical Coal
1.8.4 Mineral Sands
1.8.5 Industrial Minerals-Graphite
1.8.6 Diamond
Section 2
2. 1 Importance of Hydrometallurgy, Introduction
2.2 Extraction
2.2.1 Introduction
2.2.2. Leaching Chemistries: Sulfate, Chloride, etc, thermo, complexation, etc., unconventional lixiviants and catalysts:
2.2.3. Leaching Kinetics and mechanisms.
2.2.4. Heap Leaching
2.2.5. Tank Leaching
2.2.6 Bio leaching
2.2.7. Autoclave Leaching
2.3. Separation-Purification
2.3.1. Introduction
2.3.2. SX
2.3.3. IX
2.3.4. Precipitation
2. 4. Metal Recovery
2.4.1. Introduction
2.4.2. Electrowinning and Electrorefining
2.4.2. Chemical Reduction
2.5. Case studies
2.5.1. Gold
2.5.2. Copper
2.5.3. Nickel and Cobalt
2.6 Frontiers
2.6.1. Battery materials
2.6.2. Rare earths
2.6.3. Environmental issues
Section 3: Electrochemical material and energy
3. 1. Introduction
3.2. Molten Oxide Electrolysis
3.3. OS Process
3.4. FFC-Cambridge Process
3.5. Solid Oxide Membrane Process
3.6. Refining of Nuclear Materials in Salt Melts
3.7. Preparation of Nanocarbons in Molten Salts
3.8. Thermal Batteries
3.9. Sodium Nickel Chloride (ZEBRA) Battery
3.10. Molten Metal Batteries
3.11. Molten Carbonate Fuel Cells
3.12. AMTEC
3.13. Nuclear Molten Salt Reactor
3.14. Oxygen Sensors for Iron and Copper Melts
3.15. Hydrogen Sensors for Molten Aluminum and its Alloys
3.16. Oxygen, Hydrogen and Carbon Sensors for Molten Sodium
3.17. Ionic Liquids in Process Metallurgy