Two-dimensional Crossing-Variable Cubic Nonlinear Systems, Vol IV - Luo, Albert C. J.; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9783031628092
ISBN10:3031628098
Kötéstípus:Keménykötés
Terjedelem:208 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white; 32 Illustrations, color
700
Témakör:

Two-dimensional Crossing-Variable Cubic Nonlinear Systems, Vol IV

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 181.89
Becsült forint ár:
79 067 Ft (75 302 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

63 254 (60 242 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 15 813 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally, the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist.



Readers will learn new concepts, theory, phenomena, and analytic techniques, including



? Constant and crossing-cubic systems



? Crossing-linear and crossing-cubic systems



? Crossing-quadratic and crossing-cubic systems



? Crossing-cubic and crossing-cubic systems



? Appearing and switching bifurcations



? Third-order centers and saddles



? Parabola-saddles and inflection-saddles



? Homoclinic-orbit network with centers



? Appearing bifurcations




  • ?Develops equilibrium singularity and bifurcations in 2-dimensional self-cubic systems;

  • Presents (1,3) and (3,3)-sink, source, and saddles; (1,2) and (3,2)-saddle-sink and saddle-source; (2,2)-double-saddles;

  • Develops homoclinic networks of source, sink and saddles.

Hosszú leírás:

This book is the fourth of 15 related monographs presents systematically a theory of crossing-cubic nonlinear systems. In this treatment, at least one vector field is crossing-cubic, and the other vector field can be constant, crossing-linear, crossing-quadratic, and crossing-cubic. For constant vector fields, the dynamical systems possess 1-dimensional flows, such as parabola and inflection flows plus third-order parabola flows. For crossing-linear and crossing-cubic systems, the dynamical systems possess saddle and center equilibriums, parabola-saddles, third-order centers and saddles (i.e, (3rd UP+:UP+)-saddle and (3rdUP-:UP-)-saddle) and third-order centers (i.e., (3rd DP+:DP-)-center, (3rd DP-, DP+)-center) . For crossing-quadratic and crossing-cubic systems, in addition to the first and third-order saddles and centers plus parabola-saddles, there are (3:2)parabola-saddle and double-inflection saddles, and for the two crossing-cubic systems, (3:3)-saddles and centers exist. Finally,the homoclinic orbits with centers can be formed, and the corresponding homoclinic networks of centers and saddles exist.



Readers will learn new concepts, theory, phenomena, and analytic techniques, including



? Constant and crossing-cubic systems



? Crossing-linear and crossing-cubic systems



? Crossing-quadratic and crossing-cubic systems



? Crossing-cubic and crossing-cubic systems



? Appearing and switching bifurcations



? Third-order centers and saddles



? Parabola-saddles and inflection-saddles



? Homoclinic-orbit network with centers



? Appearing bifurcations



 

Tartalomjegyzék:

Constant and crossing-cubic vector fields.- Crossing-linear and crossing-cubic vector fields.- Crossing-quadratic and crossing-cubic Vector Field.- Two crossing-cubic vector fields.