Two-dimensional Self and Product Cubic Systems, Vol. I - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Two-dimensional Self and Product Cubic Systems, Vol. I: Self-linear and Crossing-quadratic Product Vector Field
 
A termék adatai:

ISBN13:9783031570957
ISBN10:3031570952
Kötéstípus:Keménykötés
Terjedelem:232 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white; 42 Illustrations, color
671
Témakör:

Two-dimensional Self and Product Cubic Systems, Vol. I

Self-linear and Crossing-quadratic Product Vector Field
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 171.19
Becsült forint ár:
72 618 Ft (69 160 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

66 809 (63 627 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 5 809 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

Back cover Materials


 


Albert C J Luo


Two-dimensional Self and Product Cubic Systems, Vol. I


Self-linear and crossing-quadratic product vector field


 


This book is the twelfth of 15 related monographs on Cubic Systems, discusses self and product cubic systems with a self-linear and crossing-quadratic product vector field. Equilibrium series with flow singularity are presented and the corresponding switching bifurcations are discussed. The volume explains how the equilibrium series with connected hyperbolic and hyperbolic-secant flows exist in such cubic systems, and that the corresponding switching bifurcations are obtained through the inflection-source and sink infinite-equilibriums. Finally, the author illustrates how, in such cubic systems, the appearing bifurcations include saddle-source (sink) for equilibriums and inflection-source and sink flows for the connected hyperbolic flows, and the third-order saddle, sink and source are the appearing and switching bifurcations for saddle-source (sink) with saddles, source and sink, and also for saddle, sink and source.


 


·       Develops a theory of self and product cubic systems with a self-linear and crossing-quadratic product vector field;


·       Presents equilibrium series with flow singularity and connected hyperbolic and hyperbolic-secant flows;


·       Shows equilibrium series switching bifurcations through a range of sources and saddles on the infinite-equilibriums.

Hosszú leírás:

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:




  •  double-inflection saddles, 

  •  inflection-source (sink) flows,

  •  parabola-saddles (saddle-center),

  •  third-order parabola-saddles, 

  •  third-order saddles (centers),

  •  third-order saddle-source (sink).



 



 



 

Tartalomjegyzék:

Crossing and Product cubic Systems.- Double-inflection Saddles and Parabola-saddles.- Three Parabola-saddle Series and Switching Dynamics.- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers.- Equilibrium Networks and Switching with Hyperbolic Flows.