Two-dimensional Self and Product Cubic Systems, Vol. I - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Two-dimensional Self and Product Cubic Systems, Vol. I

Self-linear and Crossing-quadratic Product Vector Field
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 171.19
Becsült forint ár:
72 978 Ft (69 503 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

58 383 (55 602 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 14 596 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:




  •  double-inflection saddles, 

  •  inflection-source (sink) flows,

  •  parabola-saddles (saddle-center),

  •  third-order parabola-saddles, 

  •  third-order saddles (centers),

  •  third-order saddle-source (sink).



 




  • Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;

  • Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;

  • Shows equilibrium appearing bifurcations of (2,2)-double-inflection saddles and inflection-source (sink) flows.

Hosszú leírás:

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:




  •  double-inflection saddles, 

  •  inflection-source (sink) flows,

  •  parabola-saddles (saddle-center),

  •  third-order parabola-saddles, 

  •  third-order saddles (centers),

  •  third-order saddle-source (sink).



 



 



 

Tartalomjegyzék:

Crossing and Product cubic Systems.- Double-inflection Saddles and Parabola-saddles.- Three Parabola-saddle Series and Switching Dynamics.- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers.- Equilibrium Networks and Switching with Hyperbolic Flows.