ISBN13: | 9783031570957 |
ISBN10: | 3031570952 |
Kötéstípus: | Keménykötés |
Terjedelem: | 232 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white; 42 Illustrations, color |
700 |
Matematika a mérnöki- és természettudományok területén
Taxonómia, rendszertan
A mérnöki tudományok általános kérdései
További könyvek a számítástechnika területén
Matematika a mérnöki- és természettudományok területén (karitatív célú kampány)
Taxonómia, rendszertan (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
További könyvek a számítástechnika területén (karitatív célú kampány)
Two-dimensional Self and Product Cubic Systems, Vol. I
EUR 171.19
Kattintson ide a feliratkozáshoz
This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:
- double-inflection saddles,
- inflection-source (sink) flows,
- parabola-saddles (saddle-center),
- third-order parabola-saddles,
- third-order saddles (centers),
- third-order saddle-source (sink).
- Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;
- Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;
- Shows equilibrium appearing bifurcations of (2,2)-double-inflection saddles and inflection-source (sink) flows.
This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:
- double-inflection saddles,
- inflection-source (sink) flows,
- parabola-saddles (saddle-center),
- third-order parabola-saddles,
- third-order saddles (centers),
- third-order saddle-source (sink).
Crossing and Product cubic Systems.- Double-inflection Saddles and Parabola-saddles.- Three Parabola-saddle Series and Switching Dynamics.- Parabola-saddles, (1:1) and (1:3)-Saddles and Centers.- Equilibrium Networks and Switching with Hyperbolic Flows.