Two-dimensional Self and Product Cubic Systems, Vol. I - Luo, Albert C. J.; - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9783031595813
ISBN10:3031595815
Kötéstípus:Keménykötés
Terjedelem:239 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 1 Illustrations, black & white
700
Témakör:

Two-dimensional Self and Product Cubic Systems, Vol. I

Self-linear and Crossing-quadratic Product Vector Field
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 181.89
Becsült forint ár:
79 067 Ft (75 302 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

72 742 (69 278 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 6 325 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:



-        double-inflection saddles, 



-        inflection-source (sink) flows,



-        parabola-saddles (saddle-center),



-        third-order parabola-saddles, 



-        third-order saddles and centers.



 



?        Develops a theory of crossing and product cubic systems with a self-linear and crossing-quadratic product vector field;



?        Presents singular equilibrium series with inflection-source (sink) flows and networks of simple equilibriums;



?        Shows equilibrium appearing bifurcations of (2,2)-double-inflection saddles and inflection-source (sink) flows.

Hosszú leírás:

This book, the 14th of 15 related monographs on Cubic Dynamical Systems, discusses crossing and product cubic systems with a self-linear and crossing-quadratic product vector field. Dr. Luo discusses singular equilibrium series with inflection-source (sink) flows that are switched with parabola-source (sink) infinite-equilibriums. He further describes networks of simple equilibriums with connected hyperbolic flows are obtained, which are switched with inflection-source (sink) and parabola-saddle infinite-equilibriums, and nonlinear dynamics and singularity for such crossing and product cubic systems. In such cubic systems, the appearing bifurcations are:



-        double-inflection saddles, 



-        inflection-source (sink) flows,



-        parabola-saddles (saddle-center),



-        third-order parabola-saddles, 



-        third-order saddles and centers.

Tartalomjegyzék:

Self and product cubic systems.- Second and third order equibriliums.- Equilibrium series and switching dynamics.-  Saddle nodes and hyperbolic flow series.- Simple equilibrium series and switching dynamics.