ISBN13: | 9783031570995 |
ISBN10: | 3031570995 |
Kötéstípus: | Keménykötés |
Terjedelem: | 227 oldal |
Méret: | 235x155 mm |
Nyelv: | angol |
Illusztrációk: | 1 Illustrations, black & white; 82 Illustrations, color |
700 |
Matematika a mérnöki- és természettudományok területén
Taxonómia, rendszertan
A mérnöki tudományok általános kérdései
További könyvek a számítástechnika területén
Matematika a mérnöki- és természettudományok területén (karitatív célú kampány)
Taxonómia, rendszertan (karitatív célú kampány)
A mérnöki tudományok általános kérdései (karitatív célú kampány)
További könyvek a számítástechnika területén (karitatív célú kampány)
Two-dimensional Self and Product Cubic Systems, Vol. II
EUR 171.19
Kattintson ide a feliratkozáshoz
This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center).
- Develops a theory of crossing and product cubic systems with a crossing-linear and self-quadratic product vector field;
- Presents equilibrium series with hyperbolic-to-hyperbolic-scant flows and with paralleled hyperbolic flows;
- Shows equilibrium series switching bifurcations by up-down hyperbolic upper-to-lower saddles, parabola-saddles, et al.
This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center).
Quadratic and Cubic Product Systems.- Inflection Singularity and Bifurcation Dynamics.- Saddle-node and hyperbolic-flow singular dynamics.