Two-dimensional Self and Product Cubic Systems, Vol. II - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Two-dimensional Self and Product Cubic Systems, Vol. II

 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 171.19
Becsült forint ár:
74 416 Ft (70 872 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

59 532 (56 698 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 14 883 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center). 



 




  • Develops a theory of crossing and product cubic systems with a crossing-linear and self-quadratic product vector field;

  • Presents equilibrium series with hyperbolic-to-hyperbolic-scant flows and with paralleled hyperbolic flows;

  • Shows equilibrium series switching bifurcations by up-down hyperbolic upper-to-lower saddles, parabola-saddles, et al.

Hosszú leírás:

This book, the 15th of 15 related monographs on Cubic Dynamic Systems, discusses crossing and product cubic systems with a crossing-linear and self-quadratic product vector field. The author discusses series of singular equilibriums and hyperbolic-to-hyperbolic-scant flows that are switched through the hyperbolic upper-to-lower saddles and parabola-saddles and circular and hyperbolic upper-to-lower saddles infinite-equilibriums. Series of simple equilibrium and paralleled hyperbolic flows are also discussed, which are switched through inflection-source (sink) and parabola-saddle infinite-equilibriums. Nonlinear dynamics and singularity for such crossing and product cubic systems are presented. In such cubic systems, the appearing bifurcations are: parabola-saddles, hyperbolic-to-hyperbolic-secant flows, third-order saddles (centers) and parabola-saddles (saddle-center). 

 

 

Tartalomjegyzék:

Quadratic and Cubic Product Systems.- Inflection Singularity and Bifurcation Dynamics.- Saddle-node and hyperbolic-flow singular dynamics.