Two-dimensional Product-cubic Systems, Vol.II - Luo, Albert C. J.; - Prospero Internetes Könyváruház

Two-dimensional Product-cubic Systems, Vol.II

Product-quadratic Vector Fields
 
Kiadás sorszáma: 2024
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 171.19
Becsült forint ár:
72 978 Ft (69 503 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

58 383 (55 602 Ft + 5% áfa )
Kedvezmény(ek): 20% (kb. 14 596 Ft)
A kedvezmény érvényes eddig: 2024. december 31.
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Még nem jelent meg, de rendelhető. A megjelenéstől számított néhány héten belül megérkezik.
 
  példányt

 
Rövid leírás:

This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source and center are presented, and the networks of the hyperbolic flows with paralleled saddle and center are also illustrated. Readers will learn new concepts, theory, phenomena, and analysis techniques.




  • Product-quadratic and product cubic systems

  • Self-linear and crossing-quadratic product vector fields

  • Self-quadratic and crossing-linear product vector fields

  • Hybrid networks of equilibriums and 1-dimensional flows

  • Up-down and down-up saddle infinite-equilibriums

  • Up-down and down-up sink-to-source infinite-equilibriums

  • Inflection-source (sink) Infinite-equilibriums 

  • Diagonal inflection saddle infinite-equilibriums

  • Infinite-equilibrium switching bifurcations



 




  • Develops singularity and networks of equilibriums and 1-diemsnional flows in product-quadratic and cubic systems; 

  • Provides dynamics of product-quadratic/ product-cubic systems through equilibrium network and first integral manifolds;

  • Discovers new switching bifurcations through infinite-equilibriums of up-down upper-saddles (lower-saddles). 

Hosszú leírás:

This book, the sixth of 15 related monographs, discusses singularity and networks of equilibriums and 1-diemsnional flows in product quadratic and cubic systems. The author explains how, in the networks, equilibriums have source, sink and saddles with counter-clockwise and clockwise centers and positive and negative saddles, and the 1-dimensional flows includes source and sink flows, parabola flows with hyperbolic and hyperbolic-secant flows. He further describes how the singular equilibriums are saddle-source (sink) and parabola-saddles for the appearing bifurcations, and the 1-dimensional singular flows are the hyperbolic-to-hyperbolic-secant flows and inflection source (sink) flows for 1-dimensional flow appearing bifurcations, and the switching bifurcations are based on the infinite-equilibriums, including inflection-source (sink), parabola-source (sink), up-down and down-up upper-saddle (lower-saddle), up-down (down-up) sink-to-source and source-to-sink, hyperbolic and hyperbolic-secant saddles. The diagonal-inflection upper-saddle and lower-saddle infinite-equilibriums are for the double switching bifurcations. The networks of hyperbolic flows with connected saddle, source and center are presented, and the networks of the hyperbolic flows with paralleled saddle and center are also illustrated. Readers will learn new concepts, theory, phenomena, and analysis techniques.




  • Product-quadratic and product cubic systems

  • Self-linear and crossing-quadratic product vector fields

  • Self-quadratic and crossing-linear product vector fields

  • Hybrid networks of equilibriums and 1-dimensional flows

  • Up-down and down-up saddle infinite-equilibriums

  • Up-down and down-up sink-to-source infinite-equilibriums

  • Inflection-source (sink) Infinite-equilibriums 

  • Diagonal inflection saddle infinite-equilibriums

  • Infinite-equilibrium switching bifurcations

Tartalomjegyzék:

Constant and Crossing-cubic Vector Fields.- Self-linear and Crossing-cubic Vector Fields.- Self-quadratic and Crossing-cubic Vector Fields.