Understanding Bose-Einstein Condensation, Superfluidity, and High-Temperature Superconductivity - Attard, Phil; - Prospero Internetes Könyváruház

Understanding Bose-Einstein Condensation, Superfluidity, and High-Temperature Superconductivity
 
A termék adatai:

ISBN13:9781032823935
ISBN10:1032823933
Kötéstípus:Keménykötés
Terjedelem:288 oldal
Méret:234x156 mm
Súly:453 g
Nyelv:angol
Illusztrációk: 60 Illustrations, black & white; 60 Line drawings, black & white; 7 Tables, black & white
687
Témakör:

Understanding Bose-Einstein Condensation, Superfluidity, and High-Temperature Superconductivity

 
Kiadás sorszáma: 1
Kiadó: CRC Press
Megjelenés dátuma:
 
Normál ár:

Kiadói listaár:
GBP 100.00
Becsült forint ár:
52 500 Ft (50 000 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

47 250 (45 000 Ft + 5% áfa )
Kedvezmény(ek): 10% (kb. 5 250 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Rövid leírás:

This book presents these phenomena in terms of particles, their positions, and their momenta, giving a concrete visualisation and description that is not possible with traditional wave functions.

Hosszú leírás:

Bose-Einstein condensation, superfluidity, and superconductivity are quantum mechanics made visible. They mark the boundary between the classical and the quantum worlds, and they show the macroscopic role of quantum mechanics in condensed matter.


This book presents these phenomena in terms of particles, their positions, and their momenta, giving a concrete visualisation and description that is not possible with traditional wave functions. A single approach that bridges the classical-quantum divide provides new insight into the role of particle interactions in condensation, the nature of collisions in superfluid flow, and the physical form of Cooper pairs in high-temperature superconductors.


High-temperature superconductivity is explored with quantum statistical mechanics, which links it to Bose-Einstein condensation. Identifying a new mechanism for Cooper pairing, this explains the differences between the low- and high-temperature superconducting regimes and the role of the molecular structure of the conductor.


The new perspective offered by this book on Bose-Einstein condensation, superfluidity, and high-temperature superconductivity gives particle-based explanations as well as mathematical and computational methods for these macroscopic quantum phenomena so that readers understand the role of particle interactions and structure in the physics of these phenomena.


This book will appeal to undergraduate and graduate students, lecturers, academics, and scientific researchers in the fields of Bose-Einstein condensation and condensates, superfluidity, and superconductivity. It will also be of interest to those working with thermodynamics, statistical mechanics, statistical physics, quantum mechanics, molecular dynamics, materials science, condensed matter physics, and theoretical chemistry.


Key Features:


?         Explores Bose-Einstein condensation with new evidence for multiple condensed states and novel Monte Carlo simulations for interacting bosons


?         Establishes the thermodynamic nature of condensed bosons from an analysis of fountain pressure measurements, including that they carry energy and entropy, and the thermodynamic principle of superfluid flow


?         Derives equations of motion for condensed bosons, and performs molecular dynamics simulations of the viscosity with molecular trajectories that give rise to superfluidity


?         Identifies the mechanism for electron pairing in high-temperature superconductivity

Tartalomjegyzék:

Chapter 1: Introduction. Chapter 2: Ideal Boson Model of Condensation. Chapter 3: Interacting Bosons and the Condensation Transition. Chapter 4: Fountain Pressure and Superfluid Flow. Chapter 5: Molecular Dynamics of Superfluidity. Chapter 6: High-Temperature Superfluidity. Chapter 7: Quantum Statistical Mechanics. References. Index.