Wireless Sensor Networks - Sun, Limin; Chen, Yongle; (szerk.) - Prospero Internetes Könyváruház

 
A termék adatai:

ISBN13:9789819621859
ISBN10:9819621852
Kötéstípus:Puhakötés
Terjedelem:295 oldal
Méret:235x155 mm
Nyelv:angol
Illusztrációk: 23 Illustrations, black & white; 129 Illustrations, color
700
Témakör:

Wireless Sensor Networks

18th China Conference, CWSN 2024, Taiyuan, China, September 20?22, 2024, Proceedings, Part I
 
Kiadó: Springer
Megjelenés dátuma:
Kötetek száma: 1 pieces, Book
 
Normál ár:

Kiadói listaár:
EUR 74.89
Becsült forint ár:
31 768 Ft (30 255 Ft + 5% áfa)
Miért becsült?
 
Az Ön ára:

29 226 (27 835 Ft + 5% áfa )
Kedvezmény(ek): 8% (kb. 2 541 Ft)
A kedvezmény csak az 'Értesítés a kedvenc témákról' hírlevelünk címzettjeinek rendeléseire érvényes.
Kattintson ide a feliratkozáshoz
 
Beszerezhetőség:

Becsült beszerzési idő: A Prosperónál jelenleg nincsen raktáron, de a kiadónál igen. Beszerzés kb. 3-5 hét..
A Prosperónál jelenleg nincsen raktáron.
Nem tudnak pontosabbat?
 
  példányt

 
Hosszú leírás:

This two-volume set, CCIS 2341 and CCIS 2342, constitutes the refereed proceedings of the 18th China Conference on Wireless Sensor Networks, CWSN 2024, held in Taiyuan, China, during September 20?22, 2024.



The 41 full papers presented in this volume were carefully reviewed and selected from 75 submissions. They were organized in topical sections as follows:-



Part I: Cloud computing and edge computing; Internet of things security and privacy protection; Internet of things service and application technology.



Part II: Smart internet of things; Theory and technology of wireless sensor network.

Tartalomjegyzék:

.- Cloud Computing and Edge Computing.

.- GL-CrackNet : A lightweight network for cracksegmentation in vehicular systems.

.- Multi-UAV Distributed Incremental Learning for Frequency-Hopping Prediction.

.- Task Offloading Scheduling and Privacy Protection Optimization in Vehicular Edge Computing based on Double Deep Q-Network.

.- Crowdsourcing task recommendation method based on heterogeneous graph feature anomaly detection.

.- Topology Inference of IoT Edge Network Based on Network Flow Behavior Analysis.

.- SmartTask: Efficient Dispatching for Low-Latency Tasks on Dynamic Edge Networks.

.- BM2 SS: Blockchain-aided Multi-Authority and Multi-Keyword Searchable Scheme for IoT.

.- Fog-Enabled Network Intrusion Detection Based on Variational Autoencoder for Internet of Vehicles.

.- Enabling Sub-Second QoS-Aware Scheduling for Dynamic Serverless Workloads.

.- EdgeMeter: Towards Efficient and Accurate Latency Prediction of Neural Network Model Inference on Edge Devices.

.- Enhancing IoT Compliance Checking with Distributed Process Mining: A Scalable Framework for Log Data Streams.

.-  Internet of Things Security and Privacy Protection.

.- EMLogger: Inferring Computer Activities via EM Side-channel of Disks.

.- A Lightweight Authentication Protocol for LAFED.

.- Generalizable and Robust Log Anomaly Detection Based on Transformer.

.- Internet of Things Service and Application Technology.

.- Research on The Method of Face Recognition Based on Attention Mechanism.

.- Lightweight and Efficient Top-down Human Pose Estimation Algorithm Research.

.- Research on Transformer Tracking with Temporal Context and Bounding Box Refinement Module.

.- VibECG: Non-Contact Electrocardiogram Monitoring Based on mmWave Sensing.

.- Human Activity Recognition based on Fine-grained Capture Spatiotemporal Features of Body RFID Skeleton.

.- ChewSense: Real-time Detection of Chewing Counts and Food Types with Reverse Signals from Headphones.

.- Simulated annealing-based routing optimization algorithm for LEO satellite-assisted UAV networks.

.- SimilarBP: Leveraging Similar Samples for Few-Shot PPG-Based Blood Pressure Measurement.